
 

 

 
Abstract—Many noise reduction techniques were developed over 

the past decades and noise reduction is still a major problem in many 
applications. Although reducing noise, these algorithms typically 
introduce some distortion to speech signal. Humans are quite capable 
of detecting speech in background noise, so we propose a method for 
noise reduction based on the model of cochlear processing of speech 
signals. Using our model of signal reconstruction from the cochlear 
output we have achieved improvement in speech quality. Our 
experiments show that the proposed approach performs better than 
several other noise reduction methods. 
 

Keywords—Cochlear model, noise reduction, speech signal, 
PESQ.  

I. INTRODUCTION 

PEECH communication is an essential part of our lives. It 
takes place practically everywhere and is always affected 

by random noises. Whether the characteristics of these noises 
are known or not, they all corrupt the quality of speech 
signals. The problem of noise reduction has been widely 
studied over the past decades and in still an active research 
field. 

Many techniques for noise reduction have been developed, 
including spectral magnitude estimation [1][2], signal 
subspace [3],[4], Wiener filtering [5],[6], Kalman filtering 
[7],[8] and hidden Markov models [9],[10].  

Generally, their noise reduction performance was evaluated 
by assessing the improvement of signal-to-noise ratio (SNR), 
subjective speech quality or automatic speech recognition 
(ASR) performance. Noise reduction algorithms typically 
achieve noise reduction by introducing some distortion to 
speech signal, and some, like the subspace method, are even 
explicitly formulated based on the trade-off between noise 
reduction and speech distortion [5]. Many noise reduction 
techniques have also been used in image and video signals 
[11,12]. 

We propose a method for noise reduction based on the 
model of cochlear processing of speech signals. Humans are 
quite capable of detecting speech in background noise, so the 
idea is to mimic the behavior of human cochlea in order to 
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achieve better noise reduction. However, the output of a 
cochlear model is not a speech signal so we proposed a 
method for speech signal reconstruction from the cochlear 
output. This method of signal reconstruction has been 
presented in [13] and this paper is an extension of our 
previous works [13],[14]. We observed that, when applied to 
noisy speech signal, this method results with improved signal 
quality. In order to evaluate our approach, we compare it to 
other state-of-the-art noise reduction techniques. Speech 
quality is measured with Perceptual Evaluation of Speech 
Quality (PESQ) score [15]. It is standardized as ITU-T 
recommendation P.862 and is used for objective assessment of 
speech quality.  

This paper is organized as follows. In Section II. we present 
our cochlear model based method for noise reduction in 
speech signals. In Section III. several other methods for noise 
reduction are briefly described and compared to our approach 
in Section IV. Section V. concludes the paper. 

  

II. COCHLEAR MODEL BASED NOISE REDUCTION 

A. Biophysical cochlear model 

The human cochlea transforms incoming sound pressure 
into vibrations of the basilar membrane which result in 
generation of neural impulses. Besides amplifying incoming 
sound waves and converting them into neural signals, it also 
acts as a mechanical frequency analyzer and can be seen as a 
system designed to analyze frequency components present in 
complex sounds. Each position along the basilar membrane 
(BM) corresponds to a particular frequency. 

The cochlea is a small tube-like coiled structure about 1 cm 
long and 3.5 cm wide.  From its base to apex it is internally 
bisected with a flexible basilar membrane containing the organ 
organ of Corti - a very sophisticated structure which responds 
to basilar membrane vibrations and generates neural impulses, 
Fig. 1. It consists of one row of inner hair cells (IHC) and 
mostly three rows of outer hair cells (OHC). The IHCs are the 
actual sensory receptors; based on their hairs’ movements they 
generate neural impulses. The hair cell is an evolutionary 
triumph that solves the problem of transforming vibrational 
energy into an electrical signal. At the limits of human 
hearing, hair cells can faithfully detect movements of atomic 
dimensions and respond in the tens of microseconds. 
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Furthermore, hair cells can adapt rapidly to constant stimuli, 
thus allowing the listener to extract signals from a noisy 
background [16]. 

 
 

 

 
 

Fig. 1 Cross-section of the cochlea with enlarged organ of Corti [17] 
 
In our work, we use a biophysical cochlear model 

developed by Mammano and Nobili [18],[19]. It is a 
micromechanical cochlear model and models the cochlea at a 
level adequate to the complexity of realistic cochlear 
structures (varying cross-sectional area of cochlear channels, 
width of the partition, basilar membrane mass, stiffness, 
absolute and shear viscosity, OHC action). It fits very nicely 
with experimental data and can explain some auditory system 
phenomena like two-tone suppression, two-tone distortion, 
otoacoustic emissions including spontaneous (SOAE), 
transient-evoked (TEOAE) and stimulus frequency 
otoacoustic emissions (SFOAE) [20]. 

 

B. Signal reconstruction and noise reduction 

Based on a time-frequency response of the biophysical 
cochlear model, we propose a method for reconstructing the 
original signal. 

For the passive cochlear model and pure tone input, in order 
to reconstruct the original sinusoid from the model output 
(Fig. 2), we perform several steps:  

1) correct the model output by the delay in phase towards 
the apex;  

2) integrate over BM space in order to obtain a single 
sinusoid;  

3) divide by an area of the travelling wave profile in order 
to obtain the correct amplitude.  

 
Fig. 2 Basilar membrane response for a 2 kHz tone (passive model)  

 
When phase delay and the areas of travelling wave profiles 

are known for all frequencies/sinusoids, in a linear cochlear 
system (where superposition is valid) any audio signal can be 
easily reconstructed as it can be considered as a sum of its 
sinusoid components. 

On the other hand, the active cochlear model is nonlinear 
and superposition is not valid, but nevertheless, when we 
applied the same method on active model output of a noisy 
speech signal, we observed improved signal quality in the 
reconstructed speech signal. 

Fig. 3 shows an example of white noise reduction for a test 
sentence from male speaker. Speech signal is first applied to 
the active cochlear model input and then reconstructed from 
the basilar membrane response. Two examples of noise 
reduction for SNR=10dB and SNR=0dB are given. For each 
example, both signal waveform and its power spectrogram are 
shown. It is clearly visible that the proposed technique results 
with reduction in noise levels.  

In order to evaluate the performance of the proposed 
method, quality of the reconstructed speech has to be 
quantitatively measured and compared to other noise reduction 
techniques. 

 

III. OTHER NOISE REDUCTION TECHNIQUES USED IN 

COMPARISON 

A. Spectral subtraction with noise spectrum measured 
during non-speech activity 

This method was proposed in a well-known and extensively 
cited paper by S. Boll published in IEEE Trans. on Acoust., 
Speech, Signal Process. in 1979 [1]. The objectives of the 
paper was to develop a noise suppression technique, 
implement a computationally efficient algorithm, and test its 
performance in actual noise environments. The approach used 
was to estimate the magnitude frequency spectrum of the 
underlying clean speech by subtracting the noise magnitude 
spectrum from the noisy speech spectrum. This estimator 
required an estimate of the current noise spectrum.  
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(c) 

 
Fig. 3 Noise reduction example: (a) clean speech and its spectrogram; (b) noise reduction for SNR=10dB – top panels noisy speech and its 
spectrogram, bottom panels noise reduced speech and its spectrogram; (c) noise reduction for SNR=0dB – top panels noisy speech and its 

spectrogram, bottom panels noise reduced speech and its spectrogram 
 
 
Rather than obtain this noise estimate from a second 

microphone source, it was approximated using the average 
noise magnitude measured during nonspeech activity. Using 
this approach, the spectral approximation error was then 
defined, and secondary methods for reducing it were also 
described. 

This approach is implemented in a Matlab function which 
uses amplitude spectral subtraction and includes magnitude 
averaging and residual noise reduction. Noise spectrum is 
estimated during the initial silence period. 

 

B. Spectral subtraction and Wiener filtering with noise power 
power spectral density estimation based on optimal smoothing 
and minimum statistics  

This highly cited method of estimating the power spectral 
density of nonstationary noise when a noisy speech signal is 
given was presented by R. Martin in IEEE Trans. on Speech 
and Audio Proc. in 2001 [21]. In contrast to other methods, 
this approach does not use a voice activity detector. Instead it 
tracks spectral minima in each frequency band without any 
distinction between speech activity and speech pause. By 
minimizing a conditional mean square estimation error 
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criterion in each time step, authors derived the optimal 
smoothing parameter for recursive smoothing of the power 
spectral density of the noisy speech signal. Based on the 
optimally smoothed power spectral density estimate and the 
analysis of the statistics of spectral minima an unbiased noise 
estimator was developed. 

This method can be combined with any speech 
enhancement algorithm which requires a noise power spectral 
density estimate and we are using it in a Matlab function 
which implements both spectral subtraction and Wiener 
filtering. 

 

C. Wiener filter with Two-Step Noise Reduction (TSNR) 
and Harmonic Regeneration Noise Reduction (HRNR) 

This is the state-of-the-art approach based on the work of C. 
Plapous, C. Marro and P. Scalart published in IEEE Trans. on 
Audio, Speech, and Lang. Proc. in 2006 [22]. They proposed a 
method, called two-step noise reduction (TSNR), to refine the 
estimation of the a priori SNR which removes the drawbacks 
of the decision-directed (DD) approach (proposed by Ephraïm 
and Malah in [23]) while maintaining its advantage, i.e., 
highly reduced musical noise level. The major advantage of 
this approach is the suppression of the frame delay bias 
leading to the cancellation of the annoying reverberation effect 
characteristic of the DD approach. However, classic short-
time noise reduction techniques, including TSNR, introduce 
harmonic distortion in enhanced speech because of the 
unreliability of estimators for small signal-to-noise ratios. This 
is mainly due to the difficult task of noise power spectrum 
density (PSD) estimation in single-microphone schemes. To 
overcome this problem, the authors proposed a method called 
harmonic regeneration noise reduction (HRNR) that takes into 
account the harmonic characteristic of speech. In this 
approach, the output signal of any classic noise reduction 
technique (with missing or degraded harmonics) is further 
processed to create an artificial signal where the missing 
harmonics have been automatically regenerated. This artificial 
signal helps to refine the a priori SNR used to compute a 
spectral gain able to preserve the harmonics of the speech 
signal.  

This approach is implemented in a Matlab function which 
uses Wiener filter based on tracking a priori SNR using 
decision-directed method with TSNR and HRNR algorithms. 

 

D. The wavelet approach 

Another popular approach in noise reduction are wavelet-
based techniques. Wavelet thresholding methods for signal 
denoising were firrst introduced by D. L. Donoho in IEEE 
Trans. on Inf. Theory in 1995 [24]. 

A wavelet is a mathematical function used to divide a given 
function or continuous-time signal into different scale 
components. Usually one can assign a frequency range to each 
scale component. Each scale component can then be studied 
with a resolution that matches its scale. A wavelet transform is 

the representation of a function by wavelets. The wavelets are 
scaled and translated copies (known as "daughter wavelets") 
of a finite-length or fast-decaying oscillating waveform 
(known as the "mother wavelet"). Wavelet transforms have 
advantages over traditional Fourier transforms for 
representing functions that have discontinuities and sharp 
peaks, and for accurately deconstructing and reconstructing 
finite, non-periodic and/or non-stationary signals. 

Wavelets are natively supported in Matlab using Wavelets 
Toolbox and in our experiments we used these commands 
with the same parameters as in audio signal denoising 
example from [25]. 

 

IV. COMPARISON RESULTS 

The proposed approach is compared against several popular 
noise reduction techniques briefly described in previous 
section. In order to quantize the reconstructed speech quality, 
we used an objective voice quality measurement based on 
ITU-T recommendation P.862 – PESQ [15]. It analyzes the 
speech signal sample-by-sample after a temporal alignment of 
corresponding excerpts of reference and test signal. PESQ 
results principally model mean opinion scores (MOS). We 
find the PESQ score well suited for this measurement since all 
that finally matters in speech enhancement is human 
perception of denoised signal. 

An example of white noise reduction based on our cochlear 
model based speech enhancement is given in Fig. 3 for two 
levels of additive white noise (SNR=10dB and SNR=0dB). It 
is clearly visible that the proposed technique results with 
reduction in noise levels. Noisy speech at SNR=10dB has 
PESQ score 2.78, and noisy speech at SNR=0dB has PESQ 
score 2.02. We also calculated the PESQ score after signal 
reconstruction: for SNR=10dB, PESQ score was improved 
from 2.78 to 3.31, and for SNR=0dB, PESQ score was 
improved from 2.02 to 2.31, or expressed in percentages 19% 
and 14%, respectively. 

We conducted the same experiment with other noise 
reduction techniques and results are given in tables and figures 
below. They are denoted as methods A, B, C, D as described 
in previous section. Method B1 represents spectral subtraction 
with noise power spectrum estimation, method B2 represents 
Wiener filter with noise power spectrum estimation, and 
methods C1 and C2 represent Wiener filter with TSNR and 
HRNR, respectively. The proposed method is denoted as 
“our”.  

TABLE I. WHITE NOISE PESQ RESULTS 

White 
noise 

Noisy 
PESQ

Denoised speech PESQ 

A  B1  B2  C1  C2  D  our 

SNR=10dB  2,78  3,18  3,45  3,10  2,81  2,84  2,95  3,31 

SNR=0dB  2,02  1,48  2,46  2,26  2,37  2,43  2,31  2,31 

 
Table I and Fig. 4 show the performance of the proposed 

method compared to other noise reduction techniques in terms 
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of PESQ score for white noise. Lines in Fig. 4 denote noisy 
speech PESQ level. Results clearly indicate that our method 
performs better or comparably to other state-of-the-art 
methods. 

 

 
 

Fig. 4 Performance comparison in white noise 
 
Practically all the methods result with improved speech 

quality (except for method A in low SNR scenario). It should 
also be noted here that white noise is stationary and is easily 
estimated from non-speech intervals. Non-stationary noise is 
quite another problem and much harder to estimate. In order to 
evaluate how our method performs in non-stationary noise 
conditions, we have corrupted the original speech with babble 
noise (speech-like noise), Table II and Fig. 5. 

TABLE II. BABBLE NOISE PESQ RESULTS 

Babble 
noise 

Noisy 
PESQ 

Denoised speech PESQ 

A  B1  B2  C1  C2  D  our 

SNR=10dB  2,80  2,88  2,95  2,86  2,53  2,54  2,81  3,06 

SNR=0dB  1,87  1,78  2,11  1,99  1,51  1,54  1,90  2,16 

 

 
 

Fig. 5 Performance comparison in babble noise 
 
Results clearly indicate that our method outperforms all 

other state-of-the-art methods. Some methods even degrade 
the signal, and methods B1 and B2 are better than the others 
since they do not estimate noise from non-speech intervals, but 
continuously minimize a conditional mean square estimation 
error criterion in each time step. 

 
 

V. CONCLUSION 

In this paper we have presented our approach for noise 
reduction based on the model of cochlear processing of speech 
signals. Humans are quite capable of detecting speech in 
background noise, so the idea is to mimic the behavior of 
human cochlea in order to achieve better noise reduction.  

In order to evaluate the proposed method, we have 
conducted experiments in stationary white noise conditions 
and non-stationary babble noise conditions. Speech quality 
was measured with PESQ score. Our method was compared 
with several state-of-the-art noise reduction techniques and 
results showed that the proposed approach performs similarly 
or outperforms the other methods.  
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